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Keywords Abstract

Pedestrian trajectory prediction, | Asthey navigate city streets, autonomous cars will unavoidably collide
Automatic driving, Deep with people. Research on pedestrian trajectory prediction is crucial for
learning, Prediction method, preventing route conflicts with pedestrians. This study summarizes the
Neural-network current public dataset for pedestrian trajectoryprediction and compares

the performance of various methods. It also examines the pros and cons
of depth learning-based trajectory prediction methods. In conclusion,
we look forward to the current stateof pedestrian trajectory prediction
and the difficulties and trends in its growth.

1. INTRODUCTION

The worldwide automobile business is booming along with the fast-paced urbanization and
expanding global economy. By 2050, experts predict that 2.5 billion automobiles will circulate
worldwide. One reason cars are so standard is their ease in people's daily lives. The concurrent rise
in traffic congestion and the frequency of traffic accidents poses profound often overlooked threats
to motorists' well-being on the road. As members of the most defenseless categories involved in road
traffic, pedestrians and cyclists are particularly at risk when they do not have access to appropriate
safety gear. The National Bureau of Statistics in China reports that road-vulnerable categories
comprise 26% of all accident fatalities in the country each year. Hence, we need to find a solution to
the issue if we want to make roads and pedestrian areas safer in the future and cut down on accidents
and property damage. One critical approach to reducing traffic accidents is to improve the trajectory
prediction of people crossing the street by autonomous cars. Theability to depict, perceive, and
analyse human motion is fundamental for intelligent systems and people to live and interact. In the
study of human mobility, prediction is crucial. “Over time, the model may anticipate Scenarios
involving several agents and actively incorporate this scene data, i.e., to improve the outcomes of
active perception, predictive planning, model predictive control, or human-computer interaction.”
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Consequently, several domains, including autonomous cars, intelligent transportation, command
cities, service robots, etc., have devoted considerable resources to studying pedestrian trajectory
prediction in the last few years. Prior to autonomous cars being widely used, traffic safety must be
ensured [1]. Avoiding collisions and ensuring pedestrians are safe is possible if the autonomous
vehicle can correctly identify where people are walking in the traffic scene. Predicting the paths
of pedestrians is currently plagued by three major issues. (1) Predicting pedestrians' future
trajectories is challenging because pedestrians are a more malleable player in the traffic scene.
However, more sophisticated algorithms can approximately forecast pedestrian trajectories by
looking at the paths taken by its past moments. In contrast to automobiles and other traffic players,
pedestrians have more freedom of movement in real-world circumstances, including the ability to
turn, stop, and proceed at will. Creating a kinematic model that works for pedestriansis challenging;
drivers often need help to foretell walkers' paths. (2) A pedestrian’s future movement in a real-world
traffic scene is impacted by their free will, the traffic environment, and other pedestrians in the area,
including factors like strolling in groups and interactions. Research by Moussaid M et al. [2]
showsthat 70% of pedestrians travel in groups and that these groups often engage in simultaneous
interactions. Simulating this interaction between pedestrians in the algorithm is challenging since it
is highly abstract. Third, discovering a function that translates input to output is the implementation
of the traditional pedestrian trajectory prediction algorithm concept. This is analogous to the
mapping between varioussequences in the trajectory prediction model. A compromised state (a
forecast result that tends to anticipate acompromise trajectory) may be easily achieved using the
traditional model or training procedure. “The traditional training model cannot predict the
pedestrian's trajectory; the interaction between pedestrians and their surroundings becomes
complicated and abstract due to the effect of both the pedestrians' subjective intentions and the
objective environment.” Due to its limited contextual adaptability and inability to handle interactions
in responsible situations, the classic pedestrian trajectory prediction model has limited prediction
performance. Advancements in deep learning have allowed neural networks to achieve remarkable
success in areas such as tracking, image recognition, and classification. When applied to studying
pedestrian movements, deep learning meets all the requirements thanks to its comprehensive
theoretical framework and robust network models. “Specifically, the most popular networks for
pedestrian trajectory prediction modelling are generative adversarial networks (GANSs), graph
convolutional networks (GCNs), and recurrent neural networks (RNNSs) for sequence learning.”

2. LITERATURE REVIEW

Guo et al. [3] proposed a novel method using a directional pooling grid for each agent of interest.
There was a relationship between the relative velocities of the agent of interest and each cell in the
grid. This technique detailed the scene and their interactions by simulating the individuals' relative
locations and velocities. Two maps focused on the ego-vehicle were also used in a comparable
portrayal by Kamenev et al. [4]. A bird's- eye view of the sky revealed other vehicles as rectangles
on an occupancy map, each with its velocity vector. A lack of explicit modelling of interactions was
observed. You may represent interactions using various approaches that do not rely on graphs. By
combining the relative locations of the agent of interest with other agents in the scenario, Gupta et
al. [5] created social pooling. This was sent via a max pooling layer and an MLP for processing. This
approach enabled the network to transmit interaction data among all scene agents. Instead of using
explicit characteristics, Mangalam et al. [6] used the encoded representations of trajectories and
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waypoints for each agent in their social pooling application. They developed a non-local attention
mechanism to merge the agents' representations to teach the network how to pool resources. Several
ways use attention processes, particularly transformer layers, to encode the interactions between
agents. “These methods include those by Sun and Sun [8], Xie et al. et al. ng et al. et al., and Ngiam
et al. et al. Chen et al. [12] successfully modelled agent interactions by performing conditional
predictions based on cross-attention between the encoded agent trajectory and the intents of
surrounding agents. “Additionally, conditional predictions were used by Sun et al. [13] and Li et al.
[14] in order to include interactions. To condition the forecast of the influenced agent on the
influencer's marginal prediction, Sun et al. [13] first categorized agents as either influencers or
impacted agents. In their goal-conditioned prediction technique,Li et al. [14] allowed the trajectories
of involved agents to be affected by the objectives of other agents inthe interaction”.

Similarly, Tsao et al. [15] presented an approach whereby a Transformer encoder was trained to
model interactions using two pretext tasks: first, determining the kind of interaction, and second,
determining if the two agents were socially or non-socially near. The grid that was built around the
agent of interest was a n x mgrid, and it was represented by a sparse tensor that included the encoded
previous trajectories of other agents (Wang et al. [16]). Using a convolutional auto encoder, they
proceeded to simulate the interactions onthis grid. Potential fields are an additional, intriguing way
to model interactions [17]. The authors constructed a potential field to encircle the agent of interest.
This field indicated the agent's cost, which was more significant in areas with other agents and
infrastructural barriers. This technique taught the trajectory predictor to steer clear of impediments
and other actors.

Mangalam et al. [18] used waypoints connecting the most recent observed locations to the predicted
target location as an extra measure. In this case, the model forecasted a distribution of probabilities
for the endpoint and the intermediate checkpoints. In contrast to Dendorfer et al. [19], who solely
used goal distribution estimation to model the task's multimodality and claimed that it made the
trajectory decoder's job easier, Mangalam et al. [18] used predicted distributions to sample goals and
waypoints and they generated a conditioned probability distribution for each timestep of the
trajectory. Using this method, Chiara et al. [20] sampled from distributions of goals and introduced
random noise into the moduleresponsible for generating trajectories. Chiara et al. [20] just projected
non-parametric probability distributions for potential objectives in image space, in contrast to
Mangalam et al. [18] who conducted all their calculations in image space. A recurrent network
that dealt with the 2D locations of the agent ofinterest formed the basis of the trajectory creation
module. “Mangalam et al. [19] supplied an encoded segmentation map of the environment to both
their goal and waypoint module and their trajectory prediction module, in contrast to Dendorfer et al.
[19] and Chiara et al. [20], who solely used images to include scene information in their goal
estimation modules”. The authors Gu et al. [21] avoided explicitly estimating the goal probability
distribution in favor of intensively sampling goals based on the likely future lanes of the street
network, which they scored first. “After that, the attention mechanism and a softmax function were
used to determine the likelihood of each objective.” The authors used a trainable goal set predictor
to choosethe most probable objectives before employing this set. So far, every technique has used a
position-based probability distribution model to choose a subset of potential conditioning objective
locations.

The first use of GANs for human trajectory prediction was Social GAN by Gupta et al. [5]. “To create
new trajectories, SocialGAN employs a basic LSTM-based generator to encode previous ones, then
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runs the output through a social pooling module (see Section 3.2 for more information on this), and
finally decodes the result.” Concatenating the social pooling module's output with a random noise
vector from the standard distribution introduces diversity and uncertainty, making this technique
unimodal. When training an adversarial network, the encoder module acts as a discriminator. Using
scene and interaction modeling, the approaches SocialBiIGAT and Sophie developed by Kosaraju et
al. [22] and Sadeghian et al. [23], respectively, improved upon SocialGAN. SoPhie used
SocialGAN's framework but swapped out its social pooling module with one that relies on attention-
based interaction. Agent's distance from its neighbors is used as a metric for feature fusion. The input
of the interaction module was the encoded features, decoder module hidden states, and scene
characteristics retrieved from a scene picture using a convolutional neural network (CNN). In
addition, Kosaraju et al. [22] revised their approach to model interactions. Using the scene agents'
LSTM-encoded attributes, SocialBIGAT simulates the interaction with a GAT [24]. During
adversarial training, two people act as monitors. In Social GAN, the local discriminator remains
unchanged. The global discriminator, on the other hand, uses a convolutional neural network (CNN)
to distinguish between different types of produced trajectories according to physical scene
restrictions. Incorporating multimodality, the authors trained a latent encoder to map the produced
trajectorie back to the latent space, drawing inspiration from CycleGAN [25]. Using the Social GAN
architecture, which is focused on

pedestrians, Wang et al. [26] extended it to car highway situations. This required swapping out the
interaction module with a social module based on autoencoders (for more on this, see Section 3.2),
but otherwise, the framework remained the same. Even though they used a pyramid network to
extract characteristics from trajectories at varying temporal resolutions, Li et al. [27] also used
adversarial trainingto solve the pedestrian trajectory prediction issue. The trajectories were decrypted
after the fused features were applied using a CNN. The model's generator module introduced
unimodal noise, resulting in various paths. A state refinement module was also added to the original
SocialGAN by Zhou et al. [28]. A GAT- based interaction module was substituted for SocialGAN's
social pooling module in this state refinement module. “This module organized the agents into groups
and then used the interactions between groups and agents inside them to create a scene graph. This
enabled finer-grained interaction modeling compared to the suggested social pooling module.”

A. Trajectory prediction/imputation

This class of application cases includes imputation of trajectories [32], trajectory prediction in
artificial [29], urban [30], and marine [31] settings. “As a result of its interchange ability with
movement prediction [31] and future 3location prediction (FLP) [22], the next location/destination
prediction use case is not always clear when discussing trajectory prediction.” However, this use case
is different from the one we will talk about later—predicting the following location or destination—
because it is about the future path of a mover or the route the mover will take to its next place.
Training using high-resolution data to forecast trajectory routes with great spatial information is
essential. Consequently, these models' training data is composed of resampled, generalized, or
discretized trajectories of individual movers, which are relatively dense. For example, Capobianco
et al. [33] build 12-position, fixed-length trajectories with a defined duration of three hours by
resampling each trajectory to a fifteen-minute fixed sampling frequency. Before feeding them into
an LSTM, they are fed three vertices at a time. Mehri et al. [31] use context-aware piece-wise linear
segmentation to generalize AIS trajectories. Their model can now provide very accurate, short-term
trajectory predictions.

The work is licensed under Creative Common Attribution m
Non-Commercial 4.0 International License

[GNOIE




ISSN (ELECTRONIC): 2945-3135

Kumar, Abhishek (2024). Dynamic trajectory forecasting in crowded spaces: AnIn-Depth review of online and
adaptive prediction methods. International Journal of Multidisciplinary Research & Reviews. 3(04), 87-102.

B. Arrival time prediction

Examples of use cases that fall under this category are rail network arrival time prediction [35] and
street network arrival time prediction [36]. The acronym ETA stands for "estimated time of arrival,"
another name for this assignment. Routing algorithms that combine journey time information with
data from street networks are often used to calculate ETA in traditional intelligent transportation
systems (ITS). This trip time data may be derived from more sophisticated ML/DL prediction models
or historical averages for a particular season, day of the week, and time of day. Recurrent mechanisms
often forecast trip times because they align with past travel times (e.g., at certain times and on specific
days) [3, 36]. One study that uses aggregated trajectories to train GNNs for Google Maps journey
time forecasts is Derrow-Pinion et al. [36]. Segment and super segment embedding vectors make up
the GNN graph. Nodes keep track of information about individual street segments, such as average
current and past segment travel times and speeds, segment length, and road type.

In contrast, edges track information about whole super segments, such as real-time travel times for
those segments. Alternatively, instead of using aggregated trajectories for training, Wang et al. [37]
provide the GEO-convolutional network layer (GEO-Conv), which is also used by Buijse et al. [35]).
Using dense trajectories as input, the proposed GEO-Conv layer first applies a non-linear mapping
to each trajectory point, then uses a GEO-Conv step with multiple kernels.

C. Anomaly detection

This class of use cases is concerned with finding and dealing with anomalies, outliers, or otherwise
odd data observations and patterns. Many people use the two words interchangeably. "Deviate so
much from other observations as to arouse suspicions that a different mechanism generated it" is one
way to describe an outlier finding. Similarly, out-of-the-ordinary patterns are known as anomalies
[38]. We say there have been anomalous movements when “the trajectories of individual movers are
unremarkable, but their combined spatio-temporal pattern is unusual" [39]. “Other movement
anomalies include anomalous recordings, which have unusual spatiotemporal or thematic properties,
and anomalous (sub) trajectories.”Data with ground truth labels is uncommon since anomalies are
typically defined differently depending on the context. Anomaly detection methods look for
significant deviations from observed trajectories using geographical, spatiotemporal, or other metrics
to find unusual trajectories. For instance, GeoTrackNet [40] is a model for detecting anomalies in
maritime trajectories. It incorporates a probabilistic representation of AlS tracks based on Recurrent
Neural Networks (RNNs) and a contrario detection [41]. After GeoTrackNet identified any
anomalies, AIS specialists assessed them.

Similarly, Singh et al. [42] provide a method for detecting anomalies such as unexpected turns, on-
off switching, and trajectories using RNN regression models. Once again, the absence of ground truth
data makes a quantitative accuracy study impractical. Some studies use synthetically created outliers
to compensate for the absence of ground truth [43]. To automatically identify movement
abnormalities, such as synthetic anomalies in taxi trajectories, Liatsikou et al. [43] built an LSTM-
based network. “Since the autoencoder only accepts inputs of a certain defined length, all trajectories
are trimmed to nine points, and shorter ones are rejected, limiting the duration of the anomalies that
may be discovered.”

D. Next location/destination prediction

Predicting where a journey will end up is the purview of this use case category [44]. In most cases,
it comes down to selecting an ultimate destination or following a site from a limited pool of
possibilities. Along with GPS traces, social media check-ins (such as those from Foursquare) are
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popular data sources in this area. Next, we need to figure out where we will be checking in. Attention
methods are pretty standard for predicting one's upcoming location. For instance, Gao et al. [45]
train VANext, a convolutional network for semi- supervised network trajectories using check-in data.
Using a causal embedding approach analogous to a high- order Markov process, they transform each
user's itinerary into sequence embeddings. This includes the check-in and POI sequences. Their GRU
learns the trajectory patterns from the resultant embeddings.

Additionally, they focus on the embeddings to forecast the user's next point of interest. In order to
create separate latent vectors from sparse and significant trajectories, Feng et al. [46] modify two
attention methods. After that, a historical attention module and its DeepMove GRUs get these
embeddings. The learned attention weights may easily explain predictions based on the user's past
movement behavior. The STSAN is a new network that Li et al. [47] present. “The trajectory
embeddings are created by merging the time (activity sequence), space (distance matrices of
locations), and location attentions (location sequence and their categories).” Based on these
embeddings, they employ a softmax layer to forecast the user's subsequent POI. To address the issue
of heterogeneity, they use a federated learning framework. “Liao and colleagues [48] design
embedding using both location sequences and graph embedding's-where and what one does their
MCARNN multi-task context-aware recurrent neural network can handle both activity and location
prediction tasks using graphs representing locations.”

E. Traffic volume prediction

Traffic volume forecast on roadway segments [49], human activity prediction at particular POIs [50]
and metropolitan regions [51], and animal movement dynamics prediction [52] are all examples of
use cases that fall under the umbrella of crowd or traffic flow prediction. Aggregated trajectory data
is often used to train models for this use case. To illustrate the point, the training material for the
Traffic4Cast 2021 competition was traffic movies. The objective was to forecast traffic in the face
of changes in both space and time, such as the COVID-19 epidemic and the transfer to other cities.
After using CNN (U-Net) and multi-tasklearning, Lu [51] was able to win this challenge. Using a
multi-task learning strategy, they train the U-Net model to simultaneously anticipate future traffic
conditions for several cities by randomly sampling from all accessible cities. Similar to Wang et al.
[53], the traffic movie method is also used. Their approach involves combining individual-level
trajectories into a grid. Inflow is the sum of all the incoming traffic from other areas during a specific
time frame, while outflow is the sum of all the traffic leaving the region. Zhang et al. [54] also
construct time-series grids with average traffic speeds and cab arrivals per cell. Another popular
method for this application is graph-based modeling. To illustrate their GCN, Li et al. [55] combine
CDR data into a graph, where nodes indicate geographical statistical units and edges show their
relationships (physical distance, physical movement, phone calls, etc.). Like this, Lippert et al. [56]
construct temporal networks using bird migration data, with nodes representing radar sites and edges
representing flows between the VVoronoi tessellation cells of those locations. Alternatively, one might
follow the instructions given by Buroni et al. [57], who construct and train a Direct LSTM encoder-
decoder model using vehicle counts obtained from GPS tracks.

The goal of training the model was to anticipate the number of cars per edge for the Belgian highway
network at each time step. “In a similar vein, Gao et al [50] train a GCN+GRU model to anticipate
these visit counts by measuring the number of cars per POI each time step (hourly) using their GPS
tracks.” Also, to leverage (and fine-tune) pre-trained natural language processing models like Bert,
Roberta, GPT-2, and XLNet to forecast daily POI visit counts, Xue et al. [58] suggest a translator
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they call mobility prompting.

3. INTRODUCTION OF PEDESTRIAN TRAJECTORY PREDICTION METHOD

It is possible to classify pedestrian trajectory prediction algorithms into two broad categories: those
that rely on deep learning and those that rely on conventional probability prediction. The pedestrian
prediction is reformulated as a probability prediction issue using the usual probability prediction
approach. The goal of developing the pedestrian kinematics model was to predict how the
pedestrian's motion state would evolve in order to derive the pedestrian's trajectory. When the
situation is relatively certain—that is, when pedestrians are prepared to cross the road—Nicholas
Schneider et al. [59] utilized a dynamic Bayesian network to ascertain pedestrian trajectories based
on pedestrian head posture, the proximity of pedestrians and vehicles to the point of collision, and
the distance between pedestrians and roadside barriers. “QM The balanced Gaussian process
dynamics model (B-GPDMSs) was used by Raul et al. [60] to extract three- dimensional time-related
information from the pedestrian skeleton's key points into a low-dimensional space.” They then
obtained multiple models of the four behaviors of walking, stopping, starting, and standing while
using the model. They picked the most similar model to predict the pedestrians' future path, posture,
and intention. Nevertheless, these approaches are noise-sensitive and unable to represent rich ambient
features, complicated and dynamic motion characteristics, and real-world people. There are
significant practical issues with the limited time span in which they may receive the forecast findings.
Researchers started using deep learning approaches to pedestrian trajectory prediction challenges as
deep learning advanced. RNN-based, GAN-based, and GCN-based pedestrian trajectory prediction
are the most popular deep learning-based approaches. Using RNN for pedestrian trajectory
prediction. The network that learns from past data, which predicts the path of a pedestrian, was first
attempted using RNN. By feeding data into the historical network, the outcome is calculated. Using
this function, RNN can extrapolate values from past sequences. With its recursive organizational
structure and focus on sequence modeling, RNN has exceptional modeling skills in time analysis and
sequence learning. However, RNN's limitations become more apparent with longer time series. Due
to RNN's inability to acquire long-term memory of the data state, the network layer stops learning.
When training big networks, RNNs will cause gradients to either vanish or explode since they keep
all past information in the network. When it comes to operational efficiency, RNN models are not
very good. “They have slow training and reasoning speeds since their present states depend on the
hidden states of the past moments, which makes parallel processing impossible.” The accuracy of
pedestrian trajectory prediction relies on training the network using massivedata sets and many
network nodes. Consequently, pedestrian trajectory prediction is one area where conventional RNNs
fall short. In order to address the issue of transmitting information in lengthy sequences, researchers
have created similar variations based on RNN networks, such as GRUs and long short-term memory
networks (LSTM). These variants use gating techniques to control the flow and selection of
information. Using RNN research as a focal point, the variant above techniques have accomplished
outstanding results in pedestrian trajectory prediction [61]. Pedestrian trajectory prediction based on
GCN. A convolutional neural network based on graphs GCN is a way to train and learn from graph
data, which allows for deep learning on graph data. This data comes from the graph's edges and
nodes. Despite RNN's strong sequence modeling capabilities, it lacks a comprehensible high-level
spatio-temporal framework. The area of pedestrian trajectory prediction deals with unpredictable
pedestrian numbers and interactions. One obvious way to depict pedestrian interaction is using a
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graph structure. It outperforms the aggregation-based RNN technique in terms of effectiveness and
ease of use. The processing of graph data in non-Euclidean space is significantly impacted by GCN
[62]. The basic premise is to use deep learning techniques to convert the graph's nodes and edges
into vector space, after which grouping and classification may occur. Graph structure is now the
foundational component of several approaches [63]. These approaches often employ a combination
of deep sequence models, including long short-term memory networks, to simulate pedestrians, with
their interactions serving as connections and pedestrians themselves represented as nodes.

When GCN incorporates spatio-temporal data into pedestrian trajectory prediction, it better
understands pedestrian behavior and can simulate social interaction more quickly. While GCN's
potential uses in trajectory prediction are vast, the network's shallowness, instability, and lack of
adaptive capacity remain issues. Predicting the path of pedestrians using the GAN technique. The
network that generates hostile content By playing a game between the generation model and the
discriminant model, the GAN network, an unsupervised deep learning model, can overcome the
challenge of computing the generation probability. Incorporating a GAN network into pedestrian
trajectory prediction helps address the limitation of being able to predict only one "optimal” route.
The network is capable of predicting several realistic paths and, using game theory, may further
maximize the accuracy of its predictions. “Simultaneously, the trajectory sampler

utilizes the GAN input random vector in conjunction with the hidden representation of other
pedestrian trajectories to handle the interaction between all observed pedestrians, building on the
successful experience of GAN networks in super-resolution, image conversion, and image
synthesis.” Mode collapse and sluggish convergence are two issues that might arise in a neural
network that is based on a GAN model.

F. Trajectory prediction method based on shallow learning

An early approach to trajectory prediction used a combination of the fundamental kinematic model,
the Bayesian filter, and its extensions to project the present state into the future. Methods based on
multi-model interaction and methods based on a single kinematic model were compared by Schneider
et al. [66]. Findings demonstrate that a 30-centimeter reduction in lateral position estimate error is
achievable using the multi-model interaction-based approach while navigating. “But, the model's
assumption of constant speed makes it hard for the Bayesian filter-based model to capture
pedestrians' switching dynamics, and there are not enough data sets or motion types tested to support
the development and prediction of more complicated motion models To depict nonlinear and time-
varying dynamics, Pavlovic et al. [67] used the switched linear dynamic system (SLDS) model [68]”.
In order to anticipate nonlinear motion in the real world, the model— which relies on a Markov chain
for probability transfer—switches between several linear kinematic models. Although this model is
helpful for simpler motion models, the information about motion features it uses is not always enough
to facilitate state switching. It does not work as well for more complicated models. For complicated
motion model testing, bigger motion capture data sets are required for accuracy. Kooij et al.

[69] developed a context-based dynamic Bayesian network (DBN) model to predict pedestrian paths.
“This model controls the switching state of the SLDS model by combining context information
(pedestrian head direction, emergency degree, and environmental space layout) as a potential state
and adding it to the top of the model. This model can provide more precise forecasts compared to the
SLDS model.” While SLDS model-based prediction methods and DBN model-based prediction
methods consume a lot of computing power during model prediction reasoning and mathematical
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model building, they do an excellent job of reflecting basic motion types (like turning) and additional
scenes (like traffic lights and crosswalks) based on the SLDS model. A model of appealing and
repulsive pedestrian motion, the social force model, was suggested by Helbing et al. [70]. Robotics
and activity recognition makes heavy use of this approach [71]. While Alahi et al. [72] suggested
displaying social affinity characteristics by analyzing pedestrian paths in a crowd to determine their
relative positions, Yi et al. [73] suggested using human traits to enhance crowd forecasts. In order to
keep up with the ever-increasing advancements in machine learning, kinematics-based approaches
make use of tracking algorithms derived from machine learning, such as the Kalman filter (KF),
Markov model (MM), and Gaussian process [74] (GP). When solving the pedestrian trajectory
prediction issue, the KF model excels because it quickly achieves high prediction accuracy while
efficiently processing data from noise-free sites.

On the contrary, the accuracy of predictions is severely impacted by the high model complexity and
the substantial prediction error over extended periods. As noise levels rise, the KF model becomes
more sensitive, leading to a linear decline in prediction accuracy. While the MM performs well for
predicting the current stage of a pedestrian's movement process, it is not well-suited for predicting
the trajectory of a pedestrian over the medium to long term due to its sensitivity to fluctuations in the
trajectory. “In contrast to high-order MM, which considerably increases the computational
complexity of the model, first-order MM simply takes into account the impact of the present
pedestrian trajectory point on the future trajectory point, limiting the use of data information from
the historical trajectory point.” Assuming the latent variables follow the Gaussian distribution, the
GP model offers a non-parametric approach to probability prediction. Historical trajectory data is
used to learn the GP model's anticipated trajectory [75], and an appropriatekernel function is
specified in the GP model to clarify the uncertainty associated with line prediction using trajectory
modeling. As a result of its ability to anticipate data with noise points, GP models can circumvent
the fact that trajectory data is not discrete and accurately portray the statistical features of the
distribution of pedestrian trajectories.

To summarize, the shallow learning-based trajectory prediction technique has made some early
progress andcontributed to the development of pedestrian trajectory prediction. “Unfortunately, there
is a significant disparity between the real situation and the final prediction impact because of the
limits of kinematics-based approaches, inadequate extraction of motion feature information, lack of
unique scene information, and the complexity of model creation.” Predicting more complicated
pedestrian motion models and scenarios using conventional approaches is challenging.

G. Trajectory Prediction Method Based on RNN

In order to produce an output that is sequential in time, the RNN first encodes the incoming sequence
data into a hidden representation of a defined size. A second RNN is then used to decode the hidden
representation. Long Short-Term Memory (LSTM) networks can learn and repeat lengthy sequences
but are not good at picking up on relationships between different related sequences. For this reason,
the social pooling layer of S-LSTM [76] was suggested, which would heuristically compile data from
nearby pedestrians. One of the earliest recurrent neural network applications, S-LSTM has become
standard for pedestrian trajectory prediction by simulating human-to-human interaction in congested
environments. You can see the results of several RNN-based pedestrian trajectory prediction
algorithms in Table 1. One approach to categorizing prediction models is by the information they
draw from their neighbors; these may be models that are based on past states [77] or models that are
based on current outcomes (speed, position, etc.) [78]. Specific RNN-based pedestrian trajectory
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prediction systems use the attention mechanism to provide several approaches to neighbor weight
calculation, allowing for the differentiation of neighbor significance. To illustrate, a combination
of "soft attention™ and "hard attention™ in an attention model allows for the calculation of the pairwise
speed correlation [79] and the soft attention score based on the hidden state. “Two temporal attention
mechanisms are developed to compute the hidden state vectors of the position and velocity LSTM
layers, based on the LSTM's position-velocity-time-attention model [80].” Pedestrian interaction and
trajectory prediction credibility are both improved by attention mechanism deployment.

4. CONCLUSION

Finally, dynamic trajectory forecasting in congested areas involves many moving parts, and dealing
with the complexity of people and vehicle movements calls for innovative and flexible approaches.
Substantial improvements have been made in the examined online and adaptive prediction
algorithms' capacity to model and forecast trajectories in real-time. Machine learning, statistical
modeling, and heuristic methods are just a few of the numerous methodologies that these approaches
use. Each of these methods has its own set of strengths and weaknesses. Applications in dynamic
settings, including autonomous driving and crowd management, are perfect for online prediction
techniques because they thrive in circumstances that need quick reactions and continual updates.
Conversely, adaptive approaches improve resilience and dependability over time by enhancing
prediction accuracy by incorporating new data and adjusting models to emerging trends. These
technologies may be integrated to provide a holistic solution by combining the advantages of real-
time responsiveness with adaptive learning capabilities. More work must be done to make these
approaches more accurate and efficient, especially in dense and dynamic situations. Deploying these
technologies in realistic, real-world applications also requires tackling computing problems and
assuring scalability. Ultimately, as dynamic trajectory forecasting algorithms continue to advance,
we should be able to anticipate better and control complicated movement patterns, leading to
increased efficiency, safety, and system performance in congested areas.
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