

INTERNATIONAL JOURNAL OF MULTIDISCIPLINARY RESEARCH & REVIEWS

journal homepage: www.ijmrr.online/index.php/home

A PROSPECTIVE RANDOMIZED CONTROLLED STUDY OF THE EFFECTIVENESS OF TRAINING IN LAPAROSCOPIC INSTRUMENTATION SKILLS USING BOX TRAINER IN NOVICES

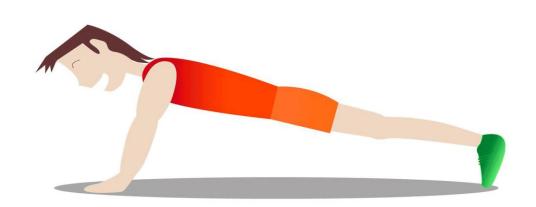
Dr. Saurav Majumdar¹, Dr. Akshita Khare²

¹Senior Resident, General Surgery West Bengal University of Health Sciences, WB, India. ²MBBS, General Surgery, West Bengal University of Health Sciences, WB, India.

How to Cite the Article: Majumdar Saurav, Khare Akshita. (2025). A Prospective Randomized Controlled Study of The Effectiveness of Training in Laparoscopic Instrumentation Skills Using Box Trainer In Novices International Journal of Multidisciplinary Research & Reviews, 4(1), 117-138.

https://doi.org/10.56815/ijmrr.v4i1.2025.117-138

Keywords	Abstract
Laparoscopic training, Box trainer, Simulation, Surgical education, Suturing skills, Skill transfer, Randomized Controlled trial, Bimanual dexterity.	Background: Laparoscopic surgery demands advanced hand-eye coordination and psychomotor skills, which are challenging for novices to acquire. Simulation-based training, such as the use of box trainers, has been proposed as an effective method for skill development. This study aims to evaluate the effectiveness of structured training using a boxing trainer in improving laparoscopic instrumentation skills among novices. Methods: A prospective randomized controlled study was conducted at KPC Medical College and Hospital from April 2021 to April 2024. Hundred participants, comprising first-year surgical residents and residents from nonsurgical departments with no prior laparoscopic experience, were enrolled. Participants were randomized into two groups: an intervention group that underwent structured training using a boxing trainer and a control group that received no formal training. Pre- and post-training assessments were conducted using standardized suturing tasks performed on the box trainer and evaluated based on time to completion, accuracy, and error rate. Results: The intervention group demonstrated statistically significant improvement in all performance metrics following training (p < 0.05), whereas the control group showed minimal or no improvement. The


intergroup comparison revealed a significant difference favouring the trained group, confirming the efficacy of simulation-based skill acquisition.

Conclusion: Laparoscopic box trainer-based training significantly enhances key laparoscopic skills in surgical novices and facilitates the effective transfer of these skills to the clinical environment. Given its low cost, accessibility, and use of equipment identical to actual laparoscopic surgery, we recommend the incorporation of box trainers into early surgical training curricula.

1. INTRODUCTION

- ✓ Laparoscopic surgery requires a steep learning curve.
- ✓ Laparoscopic skills include
 - (1) Depth perception
 - (2) Adjustment to fulcrum effect
 - (3) Hand-eye coordination
 - (4) Bimanual manipulation
 - (5) Handling of laparoscopic instruments
 - (6) Ambidexterity
- ✓ Virtual reality (VR) VS-Box trainers

Secret to success= WARM UP

2. AIMS & OBJECTIVES

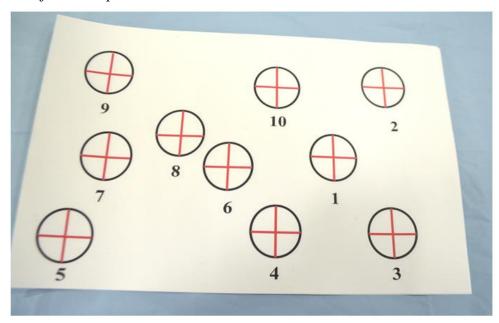
- AIM: To study the effect of training for laparoscopic instrumentation skills using a boxing trainer and assess for performance in actual laparoscopic surgery.
- OBJECTIVE: To study whether skills as a novice were transferable to the operating theatre after training on predesigned fundamental laparoscopic instrumentation tasks on a boxing trainer

3. MATERIALS AND METHOD

- STUDY AREA: KPC MEDICAL COLLEGE with an isolated room with a boxing trainer. Participants were given a task to perform suturing by using box trainers.
- STUDY POPULATION: Surgical novices (1st-year surgical residents without any prior training in laparoscopic skills as well as residents in other departments (Non-surgical)
- STUDY DURATION: April 2021 to April 2024.
- STUDY DESIGN: A Randomized control study conducted in the DEPARTMENT OF GENERAL SURGERY, KPCMCH.
- SAMPLE SIZE: 100
- RANDOMIZATION: Simple computer-generated randomization.
- o INCLUSION CRITERIA:

Surgical novices (1st-year surgical residents without any prior training in laparoscopic skills as well as residents in other departments (Non-surgical) with no prior experience in laparoscopic camera handling).

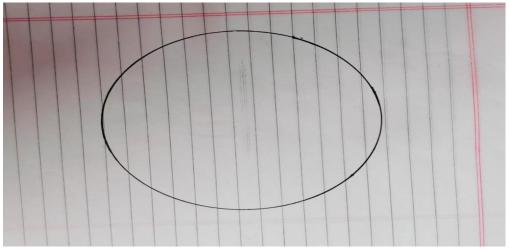
O EXCLUSION CRITERIA:


- Previous participation in projects involving laparoscopic training.
- History of holding a laparoscopic camera or handling laparoscopic instruments during laparoscopic surgery (=/>1procedures)
- A. What do we need? (Training 1- DAY 1 and 2)

A The LCD screen

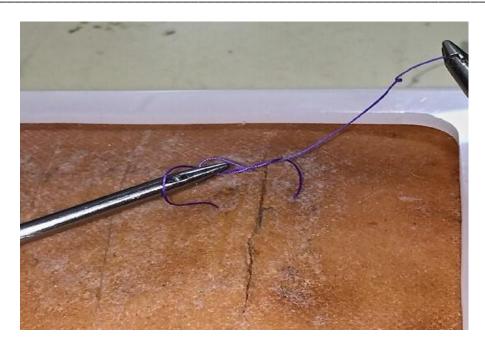
laparoscopic box trainer.

- ✓ 30-degree 10mm scope.
- ✓ A Maryland forceps
- A. White sheet of paper measuring 15x15 cm was placed inside, with 10 marked points on it in a jumbled-up manner.



B. Training 3, Day 3: Advanced bimanual instrumentation tasks

Transfer of marbles-


- a) From one container to another
- b) From a container to a specimen bag

Pattern cutting

Feeding the loop

Suturing tasks

4. METHOD

- o Participants were randomized into 2 groups
- ✓ (50 in Intervention and 50 in Control)
- ✓ Using computer generated random numbers.
- o INTERVENTION GROUP (Training 1)
- ✓ 10 mins demonstration of the task
- ✓ 5 mins to orient themselves to the equipment.
- ✓ The task was to simultaneously maintain optimal distance, horizon, and centering of a laparoscopic image displayed on the screen using the camera and a Maryland forceps
- o Training 2
- ✓ 10 mins demonstration of task
- ✓ Bidexterous tasks like peg transfers, feeding the loops, pattern cutting and suturing using a traumatic grasping forceps, maryl and forceps, scissors and needle holders
- ✓ The task was to complete as many cycles of the task possible in the given time.

Training

Day 1

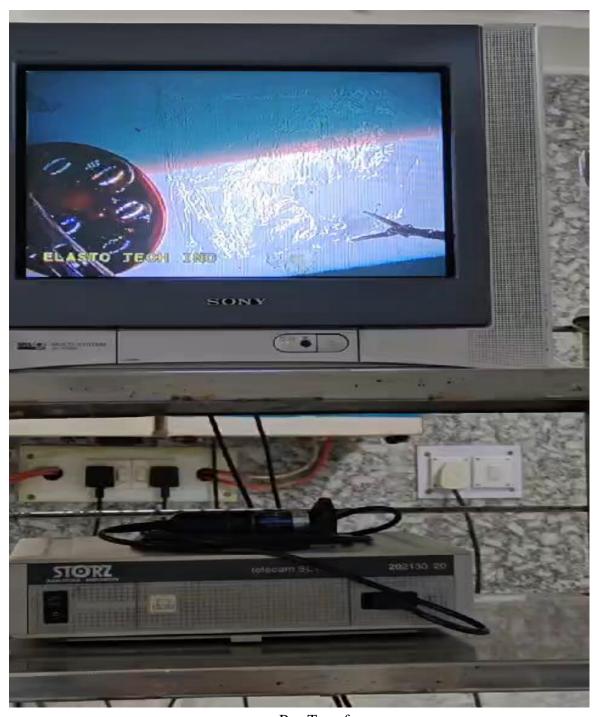
- Total intervention time was 60 mins per participant.
- Time taken to complete the 1st & last cycle, number of cycles completed in 60 mins (recorded by the primary investigator)

Training

Day 2

- Purpose- stimulate hand eye coordination
- Aim-move the instrument in the right hand through the points while keeping the image in the center.
- Total intervention time was 60 min per participant
- Time taken to complete 1st and last cycle and number of cycles completed in 60 mins were recorded by the primary investigator.

Training


Day 3-60 mins

- Purpose- use the skills of camera training and extrapolate on certain predesigned task to improve dexterity
- Each task was repeated at least 4-5 times during the 60 mins and Time taken to complete 1st and last cycle and numbers of cycles completed for each task in 60 mins were recorded by the primary investigator.

Transfer of marbles into the specimen bag

Peg Transfer

Patterned Cutting

Suturing

At the end of 3rd day of training

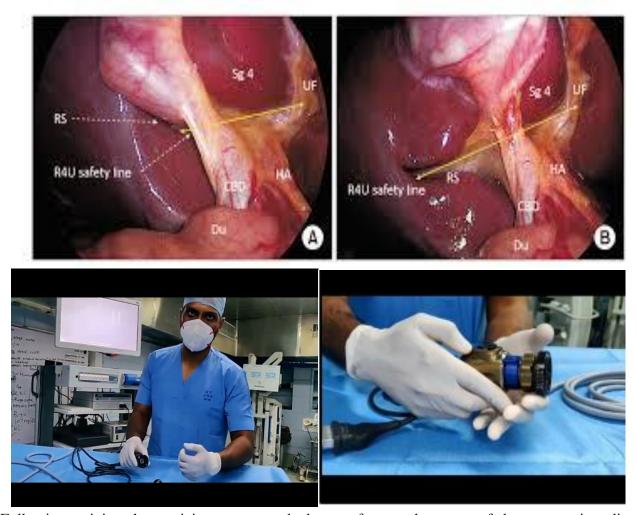
Assessment

Following end of training at the end of Day 3, any surgical novice who attained a score of <= 7 was advised to go for another day's training.

	1	2	3	4	5
Tip of	Instrument		Instrument		Instrument tip
instrument	tip frequently		tip mainly in		continuously
continuously	out of view		sight but		visible on
visible on			sometimes		screen
screen*			out of view		
Smooth	Many		Smooth		Smooth
movement	ineffective		movements,		movements
and	and rough		occasional		and Dexterity
Dexterity*	movements		inadvertent		
			movements		
Depth	Constantly		Some		Accurately
Perception**	overshoots		overshooting		directs
•	the target,		or missing of		instruments in
	wide swings,		target but		the correct
	slow to		quick to		plane of the
	correct		correct		target
Bimanual	Ignores non		Uses both		Expertly uses
Dexterity**	dominant		hands but		both hands in
•	hand, poor		does not		а
	coordination		optimise		complimentar
	between the		coordination		manner to
	hands		between the		provide the
			hands		best exposure
Efficiency**	Uncertain,		Slow but		Confident and
•	inefficient		planned		efficient,
	efforts, many		movements		maintains
	tentative				focus
	movements.				
	constantly				
	changing				
	focus				
Autonomy**	Unable to		Able to		Able to
,	complete		complete		complete task
	task even		task with		independenth
	with verbal		moderate		without
	guidance		guidance		guidance
OSATS (Object	ive and Structure	ed Assessment o)	
. ,				•	
**GOALS (Globa	I Operative Asse	ssment of Lapar	oscopic Skills)		

A feedback form was also filled up at end of training

FEEDBACK FORM					
	1(POOR)	2(AVERAGE)	3(GOOD)	4(EXCELLENT)	
TRAINING STRUCTURE					
SESSION LENGTH					
TRAINER					
EQUIPMENT					
I HAD FUN					
I LEARNT SOMETHING USEFUL					
IM GLAD, I CAME					



TIME TO COMPLETE TASK

C. Control Group

- No training
- Shown video describing laparoscopic camera and instrument handling + video showing laparoscopic cholecystectomy.

Following training the participants were asked to perform a short part of the surgery in a live laparoscopic cholecystectomy (dissection of gall bladder off the gall bladder fossa) while an assistant handles the camera

- ✓ Scoring was done by a single observer

 (2nd investigator who had no knowledge if participant had received training or not)
- ✓ The primary end point:

Performance of the participants with respect to a predesigned assessment tool (GRS Score)

✓ Secondary end points

Measured in terms of time taken to complete 1st and last cycle and total number of cycles performed in 60 mins.

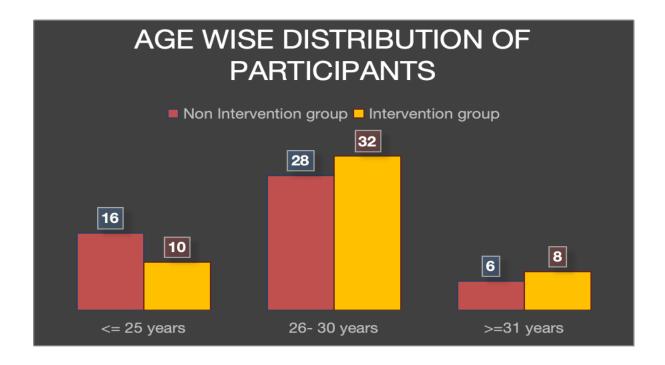
Assessment scoring was done using the Global Rating Scoring System (GRS score)

Respect for tissue	1	2	3	4	5
	Frequent unnecessary force on tissues or caused damage by inappropriate use of instruments		Careful handling of tissue but occasionally caused damage		Carefully handles tissue appropriately with minimal damage to tissues
Time and motion	1	2	3	4	5
	Many unnecessary moves		Efficient time motion, but some unnecessary moves		Clear economy of movement; maximum efficiency
Instrument handling/knowledge	1	2	3	4	5
	Tentative/awkward moves or inappropriate use		Competent use of instruments; occasionally awkward		Fluid moves with instruments; no awkwardness
Flow of operation	1	2	3	4	5
	Stopped frequently, seemed unsure of next move		Some forward planning; reasonable progression		Obviously planned course; effortless flow
Depth perception	1	2	3	4	5
	Consistently overshoots, swings wide, slow to correct		Some overshooting but quick to correct		Accurately directs instruments to correct plane
Bimanual dexterity	1	2	3	4	5
	Uses only one hand, poor coordination between hands		Uses both hands, but does not optimize their interaction		Expertly uses both hands to provide optimal exposure

5. STATISTICAL ANALYSIS

- ➤ The data collected-entered in Microsoft Excel.
- ➤ Continuous data Age and comorbidities were measured as mean and standard deviation.
- ➤ Sex distribution, distribution of residents and nurses, previous video game experience were analyzed by Chi square test.

- > Significance of difference in task completion time between 1st cycle and last cycle on Day-1 and day-2- analyzed by Wilcoxon Signed Rank test.
- Mann Whitney Test was used to compare the Post procedure assessment score between two groups


6. RESULTS & ANALYSIS

DEMOGRAPHIC ASSESSMENT:

Age wise distribution of participants

Table 1.

		Group	Total	
		Non- Intervention	Intervention	
Age (years)	<=25	16	10	26
(years)	26-30	28	32	60
	31+	6	8	14
Total		50	50	100

SEX DISTRIBUTION OF PARTICIPANTS

Table 2.

		Non Intervention	Intervention	
Gender	Female	34	26	60
	Male	16	24	40
		50	50	100

Sex Distribution (Chi square test) p=0.248, Nothing significant.

Table 3: Significant difference in task completion time between 1st cycle and last cycle (Day 1)

	No of participants	Minimum (mins)	Maximum (mins)	Median (mins)
1 st Cycle	50	7	13	10
Last Cycle	50	2	8	5

Significant difference in task completion time between 1st cycle and last cycle (Day 1)

Table 4. Significant difference in task completion time between 1st cycle and last cycle (Day 2)

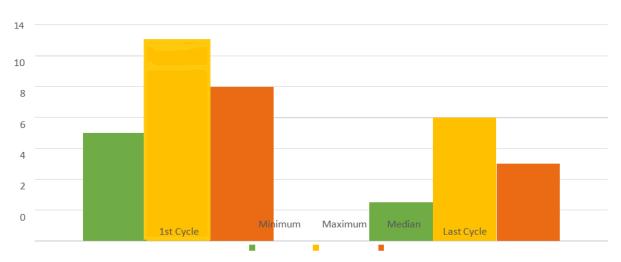


Table 4. Significant difference in task completion time between 1st cycle and last cycle (Day 2)

	No of participants	Minimu m (mins)	Maximum (mins)	Median(mi ns)
1 st Cycle	50	9	14	12
Las t Cycle	50	5	9	7

Significant difference in task completion time between 1st Cycle and Last Cycle (Day 2)

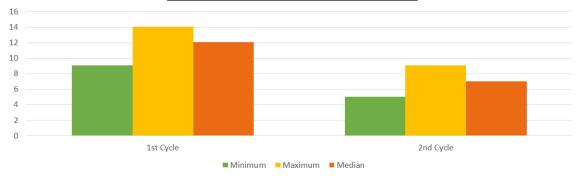


Table 5. Significant difference in task completion time between 1st cycle and last cycle

(Day 3)

	No of participants	Minimum (Mins)	Maximum (Mins)	Median (Mins)
1 st Cycle	50	15	22	17
Last Cycle	50	8	14	11

Significant difference in task completion time between 1st Cycle and Last Cycle (Day 3)

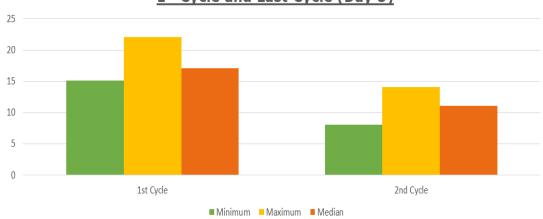


Table 6. Post Training Completion Score with respect to Age

	Number of participants	Minimum	Maximum	Median
<= 25 years	10	18	26	21
>= 25 years	40	20	24	22

Post Training Completion Score with respect to Age (Mann Whitney Test-0.498 not significant)

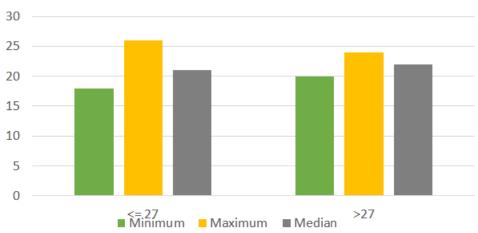


Table 7. Post training completion score Vs Sex

	Number of participants	Minimum	Maximum	Median
Male	24	18	26	22
Female	26	20	25	22

Post training Completion scores VS sex (Mann Whitney Test) P+0.868 not significant

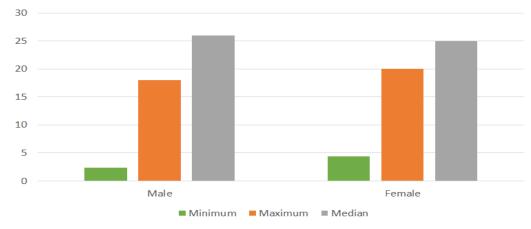


Table & Significant difference between past presedure seems between intervention and

Table 8. Significant difference between post procedure score between intervention and Non-Intervention group

	Number of participants	Minimum	Maximum	Median
Non Intervention	50	7	12	9
Intervention	50	10	20	14

Significant difference between post procedure score between intervention and non-intervention group. P= 0.045 (Significant)

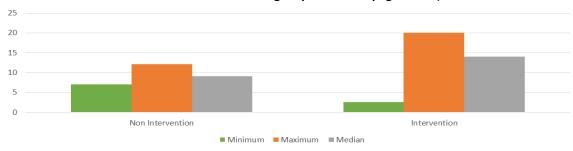
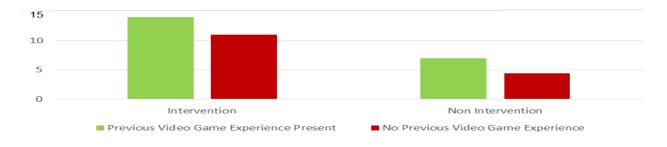



Table 9. Participants with past video game experience

G				Group		
			Non (mins)	Intervention	Intervention (mins)	
Previous Vide	eo Game	NO	36		22	58
Experience		YES	14		28	42
Total 15			50		50	100

Participants with past video game experience

7. DISCUSSION

- > Simulation based training in Laparoscopic surgery emphasizes on basic coordination skills and tactile feedback from the simulator
- > 3key tasks essential for laparoscopy:
- a) Centering of the image
- b) Maintenance of horizon
- c) Optimum viewing distance and bimanual dexterity in case of dissection.
- significant difference in post procedure scores between Intervention and Non-Intervention groups

Our study, using a novel training design, objectively demonstrates a proficiency gain curve which can be translated into real life performance gains and comparable to other previous studies

8. CONCLUSION

- In our study there was improvement in navigation skills, haptic feedback and bimanual dexterity after training and these skills were able to transfer to the operating theatre.
- Participants in the intervention group performed well when compared to control group.
- We recommend laparoscopic box trainer as simulator because of its low cost, its equivalence to real-life laparoscopy in terms of use of identical equipment.

9. AUTHOR(S) CONTRIBUTION

The writers affirm that they have no connections to, or engagement with, any group or body that provides financial or non-financial assistance for the topics or resources covered in this manuscript.

10. CONFLICTS OF INTEREST

The authors declared no potential conflicts of interest with respect to the research, authorship, and/or publication of this article.

11. PLAGIARISM POLICY

All authors declare that any kind of violation of plagiarism, copyright and ethical matters will taken care by all authors. Journal and editors are not liable for aforesaid matters.

12. SOURCES OF FUNDING

The authors received no financial aid to support for the research.

REFERENCES

- [1] Kostakis ID, et al. Comparison between robotic and laparoscopic or open anastomoses: a systematic review and meta-analysis. Robot Surg (Auckland) 2019;6:27–40. doi: 10.2147/RSRR.S186768
- [2] Aggarwal R, et al. Development of a virtual reality training curriculum for laparoscopic cholecystectomy. Br J Surg. 2009;96(9):1086–1093. doi: 10.1002/bjs.6679
- [3] Brunckhorst O, et al. Training, simulation, the learning curve, and how to reduce complications in urology. Eur Urol Focus. 2016;2(1):10–18.
- [4] Akdemir A, et al. Effect of spaced training with a box trainer on the acquisition and retention of basic laparoscopic skills. Int J Gynaecol Obstet. 2014;127(3):309–313. doi: 10.1016/j.ijgo.2014.07.015
- [5] Ali JM, Lam K, Coonar AS. Robotic camera assistance: the future of laparoscopic and thoracoscopic surgery? Surg Innov. 2018;25(5):485–491
- **[6]** Wilson MR, et al. Development and validation of a surgical workload measure: the surgery task load index (SURG-TLX) World J Surg. 2011;35(9):1961–1969
- [7] Sbaih M, Arulampalam TH, Motson RW. Rate of skill acquisition in the use of a robotic laparoscope holder (FreeHand((R))) Minim Invasive Ther Allied Technol. 2016;25(4):196–202. doi: 10.1080/13645706.2016.1182031
- [8] Proske JM, Dagher I, Franco D. Comparative study of human and robotic camera control in laparoscopic biliary and colon surgery. J Laparoendosc Adv Surg Tech A. 2004;14(6):345–348. doi: 10.1089/lap.2004.14.345.
- [9] Mittal R, et al. Use of a robotic camera holder (FreeHand((R))) for laparoscopic appendicectomy. Minim Invasive Ther Allied Technol. 2019;29:56–60. doi: 10.1080/13645706.2019.1576052
- [10] Nebot PB, et al. Comparison of task performance of the camera-holder robots EndoAssist and Aesop. Surg Laparosc Endosc Percutan Tech. 2003;13(5):334–338. doi: 10.1097/00129689-200310000-00010.
- [11] Veneziano D, et al. Construct, content and face validity of the camera handling trainer (CHT): a new E-BLUS training task for 30 degrees laparoscope navigation skills. World J Urol. 2016;34(4):479–484. doi: 10.1007/s00345-015-1657-6.