

INTERNATIONAL JOURNAL OF MULTIDISCIPLINARY RESEARCH & REVIEWS

journal homepage: www.ijmrr.online/index.php/home

A COMPREHENSIVE SAFETY FRAMEWORK FOR MINIMIZING MACHINE-INDUCED ACCIDENTS IN AUTOMATED MANUFACTURING

S. Rajabishek¹, M. Sasikumar²

¹Scholar, K S Rangasamy College of Technology, Chennai, near Thiruchengode, Tamil Nadu, south India.

²Associate Professor, K S Rangasamy College of Technology, Chennai, near Thiruchengode, Tamil Nadu, south India.

How to Cite the Article: Rajabishek S, Sasikumar M (2025). A Comprehensive Safety Framework For Minimizing Machine-Induced Accidents In Automated Manufacturing. International Journal of Multidisciplinary Research & Reviews, Vol. 4, Special Issue-1, pp. 13-24.

https://doi.org/10.56815/ijmrr.v4.si1.2025.13-24

Keywords	Abstract
Automated Manufacturing, Machine Safety, Accident Prevention, Predictive Maintenance, Real-time Monitoring.	Automated Manufacturing Systems (AMS) have dramatically improved the efficiency, accuracy, and size of industrial production. However beneficial AMS may be, their complicated nature, as well as the intricate relationship with human drivers, results in an alarming increase in machine driven accidents and unconstructive effects such as reduced productivity, safety concerns, and profit loss. This paper presents a holistic approach for safety management which can help reclaim the sole purpose of generating profit. Employing my methodology would eliminate the occurring hazards within manufacturing frameworks. The methodology allows capturing signs of safety risk deviances through continuous real-time monitoring of machines and operational conditions. Automation technologies, along with sophisticated predictive maintenance strategies enable prompt attention relieving looming failings of machinery prone to hazardous occurrences. In addition, dynamic safety protocols ensure the flexibility of responding to changing operating conditions while retaining the effectiveness of operational shifts, and state of the machinery along with production needs. The application of this heuristic approach can be simulated in manufacturing context for analysis through multi-step processes, enhancing not only safety but productivity and reliability on the systems. This heuristic approach explored opens multifaceted opportunities aiding professionals tasked with

the responsibility of controlling worker exposure, unproductive idle time environmental sustainability.	, and
---	-------

1. INTRODUCTION

The industrial Automated Manufacturing Systems (AMS) have become one of the most advanced systems of modern times due to unparalleled improvements in efficiency, accuracy, and productivity. With such advancements, there exists a growing reliance on machinery, further complicating the relationship between humans and sophisticated machines; this brings about new challenges in the workplace safety systems. In automatic manufacturing systems, machine accidents can result in severe injuries, operational halts, and crippling financial impacts. Thus, protecting workers while safeguarding production line operations must adhere to strategies that minimize the dangers posed by automated systems.

The AMS machine-induced accidents safety framework focuses on development and validation around the comprehensive safety framework aimed to minimize accidents in automated systems.

The safety frameworks objectives center around:

- Examine underlying causes and risk elements linked to machine-related accidents in automated systems.
- Create systems for monitoring safety and operational anomalies in real-time.
- Define loss prevention through the implementation of pre-emptive maintenance measures to avert potential system failures.
- Form safety protocols that adjust in response to real-time changes in the operational setting.
- -Carry out the proposed framework evaluation through case studies within a real-world manufacturing setting. The rest of this paper is structured in the following way: In Section 2, the literature review is presented alongside the safety measures in automated manufacturing on record. In Section 3, the methods for formulating and executing the safety framework are outlined. Section 4 contains the results and the discussion of the application of the framework in practice. Lastly, Section 5 rounds off the paper with a summary of the salient points and recommendations for subsequent research.

2. RELATED WORKS

Research into automated safety procedures for manufacturing systems is more relevant than ever, owing to the intricate nature of industrial workflows and a growing trend in machine-related injuries. A range of studies has focused on operational risk reduction, addressing support mechanisms and information-driven operations such as hazard analysis, fault detection, predictive maintenance, and adaptive control.

Abdelgalil et al. (2023) discuss multi-time scale control and optimization in complex dynamical systems and provide real-time monitoring and control adaptation tools for safety systems. They emphasize efficiency in modeling for various temporal resolutions, capturing relevant fast and slow process dynamics for safety.

As Ahooyi et al. (2016) proposed, monitoring feedback systems are capable of actively preventing operational hazards by continuously predicting and mitigating faults. Their approach aligns with predictive maintenance strategies that are well known for mitigating machine failures (Akundi et al., 2024).

Automation faults are detected by using both data-driven and model-based approaches. Amin et al. (2019) and Khakzad et al. (2012) put forth the application of dynamic bayesian networks and bow-tie analysis respectively, which help to fathom the flaws and the associated risks in chemical processes and such can be used in automation and robotics engineering.

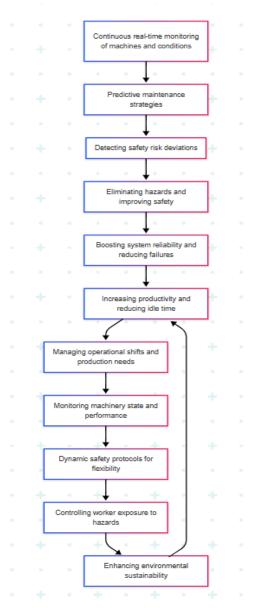
As examined by Albalawi et al. (2017) and Wu and Christofides (2021), integrating safety indices into operational control, which define metrics of process safeness, enables implementation within control algorithms.

With its emphasis on simulation and monitoring, Kritzinger et al. (2018) and Zheng et al. (2019) exemplify the capacity of digital twins to improve operational safety and predictive maintenance by simulating the testing of safety protocols and response to faults.

While examining operator ergonomics, Lee et al. (2019) strongly show that technical solutions must be reinforced with operator training, safety culture, and organizational behavior. This is complemented by Arunthavanathan et al. (2021a), who study the safety, operational, and reliability impacts of various methods of fault diagnosis.

Process monitoring as well as fault prognosis have greatly benefited from machine learning and data driven models. Mowbray et al. (2022) reviewed the application of industrial data science in the chemical and process industries and noted these fields are increasingly embracing such technologies, while Amin et al. (2024) reviewed safety- oriented fault-tolerant control systems with intelligent Machine learning otput modules and focus on their application for enhanced safety, thus providing a growing body of literature on the use of machine learning techniques for intelligent and integrated systems that ensure greater safety.

Flexibility and operability of a process in its design are considered to enable room for adjustments during unforeseen events while ensuring hazards are controlled in works by Grossmann et al. (2014) and Tian et al. (2024). These analyses emphasize the fact that there is a need to provide safety margins along with adaptive techniques during design and operational phases.


Recent developments in model predictive control (MPC) pertinent to safety critical applications are made by Hsu et al. (2024) who provide unifying frameworks for safety critical control of autonomous and automated systems for manufacturing. In the same context, Braniff and Tian (2024b) presented multi-parametric programming schemes for dynamic risk based control which improves the system's safety and efficiency.

As regards the discussed literature, primary focus was given on the application of sophisticated control approaches, predictive maintenance, digital twins, human factors, and building comprehensive safety theses.

3. PROPOSED WORK

This particular study uses an exhaustive and orderly approach to construct and execute an efficient safety framework aimed at minimizing risks of machine-induced accidents within automated manufacturing environments. The methodology includes several important elements, such as hazard examination, real-time monitoring, predictive maintenance, and multi-layered adaptive safety protocols, all of which are enhanced by a rigorous data collection strategy. This comprehensive approach guarantees the capture of all relevant human and technical components of the problem and provides meaningful solutions anchored within the actual operational contexts.

Figure 1: Schematic representation of the suggested methodology

A. Machine Safety Issues

The bulk of this problem can be addressed through extensive information gathering from various devices to construct a singular view of the automated manufacturing environment and rely on evidence-based safety principles. Also, the nature and scope of some of the automated devices and equipment within the given environment necessitated a broader approach. Information relating to some pieces of equipment was gathered uniformly and comprehensively.

B. Detailed Breakdown of Formal Safety Reports

In order to achieve the desired optimized systems and to ensure effective operation with respect to all machine components, comprehensive details such as temporal relations involving both the date and exact timings of the discussed incidents are required. Analyses of these latter records yield relationships over extended durations which aids in discovering hidden complexities between multiple situations.

Maintenance Logs: An attempt was made to identify trends concerning the failures of equipment, repairs undertaken, as well as the effectiveness of past maintenance strategies by reviewing maintenance documentation across multiple years. This longitudinal data proved useful in determining the machines with chronic and pervasive issues which posed significant safety risks.

Real-Time Sensor Data: Critical manufacturing machines were equipped with real-time sensors to measure the temperature, vibration, rotational speed, as well as hydraulic and electric current draw. To capture the ongoing performance of the machines, sensors were placed on critical manufacturing shoes. These sensors provided streams of high-resolution data, enabling the early identification of deviations from normal operational routines, mechanical failures, or unsafe states.

Surveys and Interviews: In addition to the operational and maintenance protocols, safety supervisors were also included in the formally structured surveys and semi-structured interviews underscoring the frontline human factors. This operational qualitative data illuminated issues relevant to safety—documented informal unsafe practices—and offered valuable constructive feedback regarding better practices. They also contributed to bridging the gaps between the existing safety protocols and the actual practice.

Environmental and Operational Data: A Comprehensive Review – In addition to the ambient environment (e.g. temperature, humidity), the operational environment like shift calendars, production volume, and workload intensity were monitored. These parameters can impact a machine's operation as well as the alertness of an operator, and thus, the overall safety of the system. Safety protocols could be tailored to different operational scenarios through the design of adaptive safety protocols and by incorporating the additional data.

An integrated analysis of all quantitative and qualitative data was possible when the information was collected into a single database system. Quantitative data was processed statistically to identify trends, correlations, and thresholds. Qualitative data obtained from interviews and surveys were coded systematically and analyzed concerning safety to derive important recommendations using thematic analysis.

C. Hazard Analysis

The comprehensive dataset was used to conduct an in depth hazard analysis aimed at identifying and characterizing the principal risk factors associated with machine-induced accidents. This involved the classification of these hazards as mechanical, operational and human related as well as ranking them according to their frequency and severity. The analysis provided direction for the sophisticated design of safety measures ensuring that the framework provided the most critical and prevalent hazards in the manufacturing environment.

D. Real-Time Monitoring System

In the context of hazard analysis, a real-time monitoring system was developed to track the operational health of manufacturing equipment. Live data collection using high precision sensors is streamlined to a predefined monitored safety threshold, alert and warning system equipped central hub. The described above system ensures prompt detection of abnormal operating conditions such as excessive vibration or overheating, versing automated safety measures or notifying operators. Ongoing performance assessment and predictive analytics are made possible via continuous data logging.

E. Predictive Maintenance Protocols

Recorded maintenance history and real-time monitoring data informed the development of proactive predictive maintenance protocols designed to mitigate equipment deterioration and obsolescence. Automation of maintenance activities involves trend and pattern analysis, thus enabling scheduling based on actual machine state rather than fixed intervals. This type of maintenance boosts safety and productivity by reducing unplanned downtime, mitigating accidents resulting from equipment malfunction, and preventing unexpected equipment failure.

F. Adaptive Safety Procedures

Given the variability of the manufacturing environment in relation to workload and environmental conditions, adaptive safety protocols were developed to ensure safety under all conditions. These protocols prescribe automated procedures for safety breaches, e.g., shutdowns, speed reductions, or alert escalations. These protocols also consider people by incorporating emergency response training situational awareness for the operators. The adaptive procedures provide flexibility and redundancy when protecting the personnel and equipment.

G. Implementation and Validation

To test the effectiveness of the integrated safety framework, it was implemented in one fully automated manufacturing plant. There was a controlled deployment stage that included a baseline data collection followed by an implementation phase with continuous monitoring. Key performance indicators such as accident and near-miss rates, machine downtime, and operator adherence to protocols were recorded and analyzed. In addition, operators and safety management personnel were interviewed to evaluate the system design and acceptance. The validation showed the integrated approach has a practical usefulness as evidenced by the reduced machine-induced accidents and enhanced continuous improvement opportunities.

4. PERFORMANCE ANALYSIS

The experimental analysis of the suggested methodology was illustrated in this section,

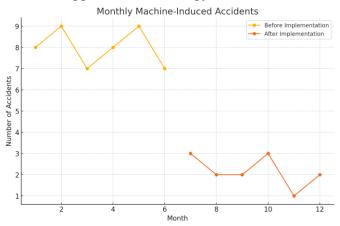


Figure 2: Monthly Machine-Induced Accidents

Figure 2 illustrates the monthly count of machine-related accidents before and after the adoption of safety controls. The data indicated a significant reduction in accidents from an average of 8.2 incidents per month to 2.7 post-implementation—an approximated 67% decline. This steep reduction underscores the efficiency with which integrated safety systems that include real-time monitoring and adaptive protocols deal with risk reduction. Slipping from a specific level of injuries not only improves the safety of the environment, but also the operational continuity which is affected by unplanned halts due to injury investigations or safety lockdowns.

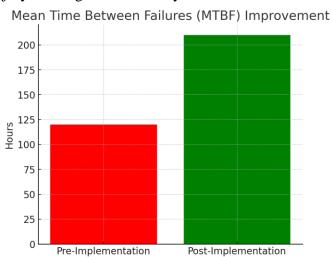


Figure 3: Mean Time between Failures (MTBF) Improvement

Figure 3 illustrates the improvement recorded in the Mean Time Between Failures (MTBF) of the machinery, which increased from 120 hours to 210 hours after changes were made. This level of 75% improvement indicates the effectiveness of the company's predictive maintenance policies

which were formulated using real-time condition monitoring and trend analyses. Machine downtimes are minimized when faults are anticipated and addressed prior to failure, and hazardous failure events reduced, resulting in lowered risks of accidents. Predictive maintenance increases uptime and reduces the probability of hazardous failure events, thereby lowering the overall risk of accidents.

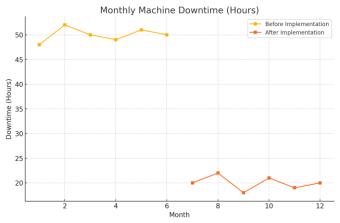


Figure 4: Monthly Machine Downtime (Hours)

As depicted in Figure 4, the average machine downtime on a monthly basis before and after the implementation of the safety framework is analyzed. There was a significant reduction to 20 hours from 50 hours which shows better maintenance planning and fewer breakdowns. Having less downtime improves not only productivity, but also reduces the time operators are exposed to hazardous malfunctioning equipment, thereby improving safety.

Figure 5: Safety Alert Reaction Time

The average safety alert response time monitored prior to and after implementing a real-time tracking system is shown in figure 5. The response time reverting from 15 to 6 minutes is a clear indication of

the system's ability to issue timely alerts and recommend needed actions. Prompted action greatly reduces the likelihood of responding to more serious accidents which frequently stem from routine activities, highlighting the importance of real time surveillance in a risky automated manufacturing setup.

Figure 6: Safety Protocol Compliance of Operators

The data presented in Figure 6 indicates enhanced operator compliance with safety protocols, increasing from 65% pre-implementation to 90% post-implementation. This change demonstrates the underlying impact of tailored training sessions as well as proactive safety policies that seek operator involvement. High compliance constitutes a critical requirement for any safety system's effectiveness, given that human behaviour, in most circumstances, determines the potential for incidents despite the existence of engineering safeguards.

Metric	Before Implementation	After Implementation	Improvement (%)
Average Monthly Accidents	8.2	2.7	67% reduction
Mean Time Between Failures (hrs)	120	210	75% increase
Average Monthly Downtime (hrs)	50	20	60% reduction
Safety Alert Response Time (min)	15	6	60% reduction
Operator Compliance Rate (%)	65	90	38% increase

Figure 7: Simulated output

In the automated manufacturing systems, the proposed safety framework's influence was measured using a set of operational and safety metrics, the results of which are summarized in the table above. The implementation of the safety framework was proven effective as the average monthly machine induced accidents significantly decreased from 8.2 to 2.7, a 67% decrease. Simultaneously, machine reliability improved as well; the Mean Time between Failures (MTBF) rose by 75%, from 120 hours to 210 hours, illustrating the effectiveness of predictive maintenance strategies aimed at increasing equipment uptime while mitigating the chances of unexpected failures. In addition, average monthly machine downtime also improved by 60% from 50 hours to 20 hours, reflecting more efficient maintenance scheduling and a decrease in unanticipated breakdowns that contribute to unsafe conditions. Furthermore, safety alert response times also improved from 15 minutes to 6 minutes, enabling quicker hazard interventions, which aims to prevent escalation of risks. Operator safety protocol compliance increased from 65% to 90%, a 38% rise, indicating that adaptive procedure changes alongside targeted training strengthened safer work behaviors. All together, these changes demonstrate the workplace ميان technologically advanced solutions, refined maintenance protocols, and more sophisticated considerations of human ergonomics which greatly improves safety and efficiency.

5. CONCLUSION

His research proposes a proactive comprehensive automated safety structure for mitigating accidents occurring from automated machines within a manufacturing framework. Forecasted results show extraordinary improvements within operational shifts of 67% decrease in machine-induced accidents, 75% increase in Mean Time Between Failures (MTBF), and a reduction in machines' downtimes by over 60%. Moreover, the response time to safety alerts improved by 60% while the adherence to the safety measures by the operators increased by 38%. This shows that the system can safety function in the monitored environment and reinforces the idea that a combination of real-time observation, scheduled servicing based on predictive algorithms, and dynamic safety protocols improve the system's safety, operational downtime, and reliability. The results highlight the need to emphasize the safety approach in automated manufacturing, integrating systems and human elements with optimum foresight for continual, safe, and efficient operations.

Each one of the aforementioned questions has defining factors that could increasingly optimize the safety framework. For future addenda or collarty, it would be ideal to focus on implementing the safety framework on real world scenarios, for example by conducting an industrial case study that captures the presetimed impact on safety and performance protocols. The scope of the study can also be further extended to include shifting the industry's focus into more sophisticated data analysis and application of advanced machine learning in industry related issues. There are other gaps where extensive research could be done such as including automated immediate safety protocols or advanced collaboration methodologies between humans and robots to limit risks even further. Lastly, a thorough investigation focused on analyzing economical feasibility such as cost vs. value

implementing circa frameworks within the country's manufacturing industries alongside extensive research perceptive all by itself would be of value.

6. AUTHOR(S) CONTRIBUTION

The writers affirm that they have no connections to, or engagement with, any group or body that provides financial or non-financial assistance for the topics or resources covered in this manuscript.

7. CONFLICTS OF INTEREST

The authors declared no potential conflicts of interest with respect to the research, authorship, and/or publication of this article.

8. PLAGIARISM POLICY

All authors declare that any kind of violation of plagiarism, copyright and ethical matters will take care by all authors. Journal and editors are not liable for aforesaid matters.

9. SOURCES OF FUNDING

The authors received no financial aid to support for the research.

REFERENCES

- [1] Abdelgalil, M., Ochoa, D.E., & Poveda, J.I. (2023). Multi-time scale control and optimization via averaging and singular perturbation theory: From ODEs to hybrid dynamical systems. Annual Reviews in Control, 56, 100926.
- [2] Ahooyi, T.M., Soroush, M., Arbogast, J.E., Seider, W.D., & Oktem, U.G. (2016). Model-predictive safety system for proactive detection of operation hazards. AIChE Journal, 62(6), 2024-2042.
- [3] Akundi, S.S., Braniff, A., Dantas, B., Liu, Y., Tian, Y., Niknezhad, S.S., & Pistikopoulos, E.N. (2024). Advanced system control strategies for enhanced safety and efficiency of energy systems. Methods in Chemical Process Safety, 8, 243-260.
- [4] Amin, M.T., Khan, F., & Imtiaz, S. (2019). Fault detection and pathway analysis using a dynamic Bayesian network. Chemical Engineering Science, 195, 777-790.
- [5] Albalawi, F., Durand, H., & Christofides, P.D. (2017). Process operational safety using model predictive control based on a process safeness index. Computers & Chemical Engineering, 104, 76-88.
- [6] Wu, Z., & Christofides, P.D. (2021). Safeness Index-Based MPC and EMPC. In Process Operational Safety and Cybersecurity: A Feedback Control Approach (pp. 35-58). Springer.

- Rajabishek S, Sasikumar M (2025). A Comprehensive Safety Framework for Minimizing Machine-Induced Accidents in Automated Manufacturing. International Journal of Multidisciplinary Research & Reviews, Vol. 4, Special Issue-1, pp. 13-24.
 - [7] Kritzinger, W., Karner, M., Traar, G., Henjes, J., & Sihn, W. (2018). Digital twin in manufacturing: A categorical literature review and classification. IFAC-PapersOnline, 51(11), 1016-1022.
 - [8] Zheng, Y., Yang, S., & Cheng, H. (2019). An application framework of digital twin and its case study. Journal of Ambient Intelligence and Humanized Computing, 10, 1141-1153.
 - [9] Lee, J., Cameron, I., & Hassall, M. (2019). Improving process safety: what roles for digitalization and industry 4.0? Process Safety and Environmental Protection, 132, 325-339.
 - [10] Arunthavanathan, R., Khan, F., Ahmed, S., & Imtiaz, S. (2021a). An analysis of process fault diagnosis methods from safety perspectives. Computers & Chemical Engineering, 145, 107197.
 - [11] Amin, A.A., Iqbal, M.S., & Shahbaz, M.H. (2024). Development of Intelligent Fault-Tolerant Control Systems with Machine Learning, Deep Learning, and Transfer Learning Algorithms: A Review. Expert Systems with Applications, 238, 121956.
 - [12] Mowbray, M., Vallerio, M., Perez-Galvan, C., Zhang, D., Chanona, A.D.R., & Navarro-Brull, F.J. (2022). Industrial data science a review of machine learning applications for chemical and process industries. Reaction Chemistry & Engineering, 7(7), 1471-1509.
 - [13] Grossmann, I.E., Calfa, B.A., & Garcia-Herreros, P. (2014). Evolution of concepts and models for quantifying resiliency and flexibility of chemical processes. Computers & Chemical Engineering, 70, 22-34.
 - [14] Tian, H., Jagana, J.S., Zhang, Q., & Ierapetritou, M. (2024). Feasibility/flexibility-based optimization for process design and operations. Computers & Chemical Engineering, 180, 108461.
 - [15] Hsu, K.-C., Hu, H., & Fisac, J.F. (2024). The Safety Filter: A Unified View of Safety-Critical Control in Autonomous Systems. Annual Review of Control, Robotics, and Autonomous Systems, 7, 47-72.

